
Visual Programming IS202

1
 المشهدي م.م. أنس القصابد. حيدر محمد

Chapter Four

Decisions and Conditions

IF statement
In VB.NET there are many forms for the IF statement. They all work by evaluating some expression
and if the expression is correct (evaluated to true) then the code within the IF block is executed.
Now check out the first simple form of IF statement:

If expression Then

Statement

Statement

…

End If

The expression here is logical one. For example A>10, A<99, B>=A and so on. If the expression is
correct, the statements inside the IF block get executed. The statement could be any valid VB.NET
statement (even another IF statement). Now here is an example of the IF statement that always get
executed:

If 10 < 100 Then

' display a friendly message

MsgBox("You must see this message")

End If

Since 10 is always smaller than 100 the condition always evaluates to true and you will always see

the message. Now change it to be:

If 10 > 100 Then

' display a friendly message

MsgBox("You must see this message")

End If

The code within the block will never get executed. Now start a new project, put a button on the

form and go to its event handler and add the following code:

Dim A As Integer

Dim B As Integer

A = InputBox("enter the value of A")

B = InputBox("enter the value of B")

If A > B Then

MsgBox("A is greater than B")

End If

If A < B Then

MsgBox("A is smaller than B")

End If

Visual Programming IS202

2
 المشهدي م.م. أنس القصابد. حيدر محمد

If A = B Then

MsgBox("A is equal to B")

End If

The InputBox is a function that reads a value from the keyboard. So the program reads two numbers and
check their status. Run the program and try different values for A and B to see how it works. Also debug the
program (by pressing F10 to execute one statement at a time) and see how the code get executed internally.

Another variation of the IF statement is the IF … ELSE. It has he following format:

If expression Then

Statement

Statement

…

Else

Statement

Statement

…

End If

The statements in black get executed when the expression is true, while the statements in red are
ignored. However if the expression is evaluated to false then the statements in black are ignored
while the statements in red are executed. To see how it works consider the following example:

If 10 > 100 Then

' this message never being displayed

MsgBox("10 is greater than 100")

Else

' this message is always being displayed

MsgBox("10 is smaller than 100, what a surprise!!!")

End If

The last form of the IF statement is the IF…ELSEIF… statement. Think of it as a multiple if
statements combined into one. The form is as follows:

If expression1 Then

Statement

Statement

…

ElseIf expression2 Then

Statement

Statement

…

ElseIf expression3 Then

Statement

Statement

…

Visual Programming IS202

3
 المشهدي م.م. أنس القصابد. حيدر محمد

Else

Statement

Statement

…

End If

In this case if expression1 is evaluated to true, then its statements are executed and then the rest
of the IF statement is ignored. If not, the expression2 is evaluated and its corresponding
statements are executed and the rest of the checks are ignored… so check out the example below
to have an idea about how it works:

If MyAge < 13 Then

' you must be a child

MsgBox("Child")

ElseIf MyAge < 20 Then

' you are a teenager

MsgBox("Hello Teenager")

ElseIf MyAge < 35 Then

' Your age is acceptable

MsgBox("Hi there young man")

Else

' the person is old

MsgBox("Hello there old man")

End If

So basically this is how the if statement works. We will create a simple Number Guessing Game
and see how the IF statement helps us to do it. So basically start a new project, and Create a form
with two buttons, a list box and a label as shown below:

Visual Programming IS202

4
 المشهدي م.م. أنس القصابد. حيدر محمد

Now for the Start button’s event write the following code:

Dim SecretNumber As Integer

Dim Attempts As Integer

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Randomize()

SecretNumber = Int(Rnd() * 100)

Attempts = 0

ListBox1.Items.Clear()

Label1.Text = "Attempts:" & Attempts.ToString

End Sub

The variables SecretNumber and Attempts are declared outside the subroutine so that their value will
persist during program execution. The statements
Randomize()
SecretNumber = Int(Rnd() * 100)

Are used to generate a random number. The numbers are usually generated using some pattern.
Each execution the same pattern of numbers appears. The first statement Randomize()makes sure
that does not happen. The Rnd()function is used to generate a random number between 0 and 1.
Multiply that by 100 you get a value between 0 and 100.
Attempts = 0

ListBox1.Items.Clear()

Label1.Text = "Attempts:" & Attempts.ToString

These statements resets the number of guessing attempts the play has made, and clears the
listbox from previous attempts. The code for the second button is:

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

Dim MyNumber As Integer

Dim Tmp As String

Tmp = InputBox("Enter a number between 1 and 100", "Guessing

game")

If IsNumeric(Tmp) Then

MyNumber = Tmp

Else

MsgBox("you should enter a number")

Exit Sub

End If

If MyNumber = SecretNumber Then

MsgBox("You Guessed the correct number",

MsgBoxStyle.OkOnly)

ElseIf MyNumber > SecretNumber Then

ListBox1.Items.Add("you should enter a lower number")

Visual Programming IS202

5
 المشهدي م.م. أنس القصابد. حيدر محمد

MsgBox("your guess is wrong")

Else

ListBox1.Items.Add("you should enter a higher number")

MsgBox("your guess is wrong")

End If

Attempts = Attempts + 1

Label1.Text = "Attempts:" & Attempts.ToString

End Sub

The code is explained as follows:
Dim MyNumber As Integer

Dim Tmp As String

Tmp = InputBox("Enter a number between 1 and 100", "Guessing

game")

Here we define a number variable to store our guess in. We also need a string variable. This one will
hold the value enter by the user so that we can check if it is a number of not (because the user can
enter text value instead of a number).
If IsNumeric(Tmp) Then

MyNumber = Tmp

Else

MsgBox("you should enter a number")

Exit Sub

End If

The IsNumeric is a function that is used to check if a string represent a number or not. So this part will
assign the number inside Tmp into MyNumber if it is a proper number representation. Otherwise you
get a message telling you about the error and the execution to the subroutine terminates because
of the Exit Sub statement. Next:
If MyNumber = SecretNumber Then

MsgBox("You Guessed the correct number",

MsgBoxStyle.OkOnly)

ElseIf MyNumber > SecretNumber Then

ListBox1.Items.Add("you should enter a lower number")

MsgBox("your guess is wrong")

Else

ListBox1.Items.Add("you should enter a higher number")

MsgBox("your guess is wrong")

End If

This is the important part were we check the number against what the computer generated. If the
numbers are a match then we display a message telling the user about his guess. If not the user get
a wrong guess message and the computer tells if you should guess a higher or lower number. Finally:
Attempts = Attempts + 1

Label1.Text = "Attempts:" & Attempts.ToString

Will only update the number of attempts.

Visual Programming IS202

6
 المشهدي م.م. أنس القصابد. حيدر محمد

Solution to In-Class Exercise

'Project: Ch04VBUniversity (Solution)

'D. Bock

'Today's Date

Public Class Payroll

 'Module level variable/constant declarations

 'Declare retirement benefit constants

 Const RETIREMENT_STANDARD_DECIMAL As Decimal = 0.05D

 Const RETIREMENT_401A_DECIMAL As Decimal = 0.08D

 Private RetirementRateDecimal As Decimal

 Private Sub ComputeButton_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles ComputeButton.Click

 Try

Visual Programming IS202

7
 المشهدي م.م. أنس القصابد. حيدر محمد

 'Declare variables and constants

 Dim HoursDecimal, PayRateDecimal, GrossPayDecimal,

FederalTaxDecimal, BenefitsCostDecimal, NetPayDecimal As Decimal

 'Declare constant used in this sub procedure

 'Tax rate constants

 Const TAX_RATE_08_DECIMAL As Decimal = 0.08D

 Const TAX_RATE_18_DECIMAL As Decimal = 0.18D

 Const TAX_RATE_28_DECIMAL As Decimal = 0.28D

 Const TAX_LEVEL_08_DECIMAL As Decimal = 985D

 Const TAX_LEVEL_18_DECIMAL As Decimal = 2450D

 'Benefit constants

 Const MEDICAL_RATE_DECIMAL As Decimal = 35.75D

 Const LIFE_RATE_DECIMAL As Decimal = 18.35D

 Const DENTAL_RATE_DECIMAL As Decimal = 4D

 'Enforce data validation rules

 If NameTextBox.Text.Trim = String.Empty Then

 'Required employee name is missing

 MessageBox.Show("Name is required", "Name Missing Error",

MessageBoxButtons.OK, MessageBoxIcon.Error)

 NameTextBox.Focus()

 NameTextBox.SelectAll()

 ElseIf EmployeeIDMaskedTextBox.MaskCompleted = False Then

 'Required employee ID is not complete

 MessageBox.Show("Employee ID is not complete", "Employee

ID Error", MessageBoxButtons.OK, MessageBoxIcon.Error)

 EmployeeIDMaskedTextBox.Focus()

 EmployeeIDMaskedTextBox.SelectAll()

Visual Programming IS202

8
 المشهدي م.م. أنس القصابد. حيدر محمد

 ElseIf DepartmentTextBox.Text.Trim = String.Empty Then

 'Required department is missing

 MessageBox.Show("Department is required", "Department

Missing Error", MessageBoxButtons.OK, MessageBoxIcon.Error)

 DepartmentTextBox.Focus()

 DepartmentTextBox.SelectAll()

 ElseIf IsNumeric(HoursTextBox.Text)

= False OrElse (Decimal.Parse(HoursTextBox.Text,

Globalization.NumberStyles.Number) <=

0D OrDecimal.Parse(HoursTextBox.Text, Globalization.NumberStyles.Number)

> 60D) Then

 'Hours must be numeric and within allowable range

 MessageBox.Show("Hours worked must be a number between 0

and 60", "Hours Value Error", MessageBoxButtons.OK, MessageBoxIcon.Error)

 HoursTextBox.Focus()

 HoursTextBox.SelectAll()

 ElseIf IsNumeric(PayRateTextBox.Text)

= False OrElse Decimal.Parse(PayRateTextBox.Text,

Globalization.NumberStyles.Currency) <= 0D Then

 'Pay rate must be numeric and greater than zero

 MessageBox.Show("Pay rate worked must be a number and

greater than zero.", "Pay Rate Value Error", MessageBoxButtons.OK,

MessageBoxIcon.Error)

 PayRateTextBox.Focus()

 PayRateTextBox.SelectAll()

 Else

 'Data rules are all valid -- Use IPO model to process

data

 'Parse textbox values to memory variables

 HoursDecimal = Decimal.Parse(HoursTextBox.Text,

Globalization.NumberStyles.Number)

 PayRateDecimal = Decimal.Parse(PayRateTextBox.Text,

Globalization.NumberStyles.Currency)

Visual Programming IS202

9
 المشهدي م.م. أنس القصابد. حيدر محمد

 'Compute gross pay

 If HoursDecimal <= 40D Then 'pay only regular time

 GrossPayDecimal = Decimal.Round(HoursDecimal *

PayRateDecimal, 2)

 Else 'pay regular + overtime

 GrossPayDecimal = Decimal.Round((40D *

PayRateDecimal) _

 + ((HoursDecimal - 40D) * PayRateDecimal * 1.5D),

2)

 End If

 'Compute federal tax

 Select Case GrossPayDecimal

 Case Is <= TAX_LEVEL_08_DECIMAL '8% tax bracket

 FederalTaxDecimal

= Decimal.Round(TAX_RATE_08_DECIMAL * GrossPayDecimal, 2)

 Case Is <= TAX_LEVEL_18_DECIMAL '18% tax bracket

 FederalTaxDecimal

= Decimal.Round(TAX_RATE_18_DECIMAL * GrossPayDecimal, 2)

 Case Else '28% tax bracket

 FederalTaxDecimal

= Decimal.Round(TAX_RATE_28_DECIMAL * GrossPayDecimal, 2)

 End Select

 'Compute insurance benefits deduction

 If MedicalCheckBox.Checked Then

 BenefitsCostDecimal +=

MEDICAL_RATE_DECIMAL 'selected medical insurance

 End If

 If LifeCheckBox.Checked Then

 BenefitsCostDecimal += LIFE_RATE_DECIMAL 'selected

life insurance

Visual Programming IS202

10
 المشهدي م.م. أنس القصابد. حيدر محمد

 End If

 If DentalCheckBox.Checked Then

 BenefitsCostDecimal += DENTAL_RATE_DECIMAL 'selected

dental insurance

 End If

 ''Remark out this part to test use of the CheckedChanged

event to

 ''set the retirement rate

 ''Compute retirement benefits deduction

 'If Retirement401ARadioButton.Checked Then

 ' BenefitsCostDecimal +=

Decimal.Round(RETIREMENT_401A_DECIMAL * GrossPayDecimal, 2)

 'ElseIf RetirementStandardRadioButton.Checked Then

 ' BenefitsCostDecimal +=

Decimal.Round(RETIREMENT_STANDARD_DECIMAL * GrossPayDecimal, 2)

 'Else

 ' 'No charge for not taking retirement benefit

 'End If

 'Use the retirement rate set in the CheckedChanged event

 'for the retirement radio button controls

 BenefitsCostDecimal += Decimal.Round(GrossPayDecimal *

RetirementRateDecimal, 2)

 'Compute the net pay – no need to round because

 'all values are already rounded

 NetPayDecimal = GrossPayDecimal - FederalTaxDecimal -

BenefitsCostDecimal

 'Display output – this shows all four outputed values

Visual Programming IS202

11
 المشهدي م.م. أنس القصابد. حيدر محمد

 GrossPayTextBox.Text = GrossPayDecimal.ToString("C")

 FederalTaxTextBox.Text = FederalTaxDecimal.ToString("N")

 BenefitsTextBox.Text = BenefitsCostDecimal.ToString("N")

 NetPayTextBox.Text = NetPayDecimal.ToString("C")

 End If 'matches If statement for validating data

 Catch ex As Exception

 MessageBox.Show("Unexpected error: " & ControlChars.NewLine &

ex.Message, "Compute Button Error", MessageBoxButtons.OK,

MessageBoxIcon.Error)

 End Try

 End Sub

 Private Sub ExitButton_Click(ByVal sender As System.Object, ByVal e A

s System.EventArgs) Handles ExitButton.Click

 'Close the form if the system user responds Yes

 Dim MessageString As String = "Do you want to close the form?"

 Dim ButtonDialogResult As DialogResult =

MessageBox.Show(MessageString, "Quit?", MessageBoxButtons.YesNo,

MessageBoxIcon.Question, MessageBoxDefaultButton.Button2)

 If ButtonDialogResult = Windows.Forms.DialogResult.Yes Then

 Me.Close()

 End If

 End Sub

 Private Sub ResetButton_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles ResetButton.Click

 'Clear all textbox controls

 NameTextBox.Clear()

 EmployeeIDMaskedTextBox.Clear()

 DepartmentTextBox.Clear()

 HoursTextBox.Clear()

Visual Programming IS202

12
 المشهدي م.م. أنس القصابد. حيدر محمد

 PayRateTextBox.Clear()

 GrossPayTextBox.Clear()

 FederalTaxTextBox.Clear()

 BenefitsTextBox.Clear()

 NetPayTextBox.Clear()

 'Reset retirement benefits status to none

 NoneRadioButton.Checked = True

 'Uncheck benefits checkboxes

 MedicalCheckBox.Checked = False

 LifeCheckBox.Checked = False

 DentalCheckBox.Checked = False

 'Set focus to name textbox

 NameTextBox.Focus()

 End Sub

 Private Sub NoneRadioButton_CheckedChanged(ByVal sender As System.Obj

ect, ByVal e As System.EventArgs) Handles NoneRadioButton.CheckedChanged,

Retirement401ARadioButton.CheckedChanged,

RetirementStandardRadioButton.CheckedChanged

 'Create a radio button in memory and store the values of sender

to it

 Dim CheckedRadioButton As RadioButton = CType(sender,

RadioButton)

 'Use Select Case to evaluate the name of the radio button

 'to decide which controls to enable/disable

 Select Case CheckedRadioButton.Name

 Case "NoneRadioButton" 'Cost is zero

Visual Programming IS202

13
 المشهدي م.م. أنس القصابد. حيدر محمد

 RetirementRateDecimal = 0D

 Case "RetirementStandardRadioButton" 'Standard rate

 RetirementRateDecimal = RETIREMENT_STANDARD_DECIMAL

 Case "Retirement401ARadioButton" '401A rate

 RetirementRateDecimal = RETIREMENT_401A_DECIMAL

 End Select

 End Sub

End Class

For Loop
Almost every language has some kind of looping statement (in case you don’t know what that does, it allows
the execution of a number of statements several times).
In VB.NET there are a number of looping statements, these are REPEAT, DO and FOR. We will talk about the
easiest of them all which is the FOR loop. The FOR loop is written like this:

For variable = Min To Max Step JumpStep

Statement

Statement

…

Next

The code will execute the statements between the For and Next parts by setting the variable to Min,
increasing it by one every time until it reaches Max. To make things clear consider this example

For A = 1 To 10

MsgBox("The value of A is:" & A)

Next

The result of executing the code above is ten message boxes telling you the value of A every time.
Now let us consider another example. Here you have a form with a textbox and a ComboBox. You select
font size from the combo box and the text size changes accordingly.

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

' this part fills the combobox with the sizes of font that we

' can pick from

Visual Programming IS202

14
 المشهدي م.م. أنس القصابد. حيدر محمد

Dim I As Double

For I = 12 To 70

ComboBox1.Items.Add(I)

Next

End Sub

Private Sub ComboBox1_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

ComboBox1.SelectedIndexChanged

' this part changes font size

Dim F As Font

F = New Font("COURIER NEW", ComboBox1.Text)

TextBox1.Font = F

End Sub

You notice two things in the example, first the loop does not start from 1, it starts from 12, you can start from
any value you like, for example start from 283732, -12, 0, 88888, etc. Second the data type of the variable I
is double. You can use Single, Double, Integers, Long… You are not restricted here. If we want to display the
numbers between 5 and 50 by adding 5 to the previous in each step then:

Dim Counter As Integer

For Counter = 5 To 50 Step 5

MsgBox(Counter)

Next

Assume we need the values 0, 0.1, 0.2, 0.3, 0.4, 0.5… 1.0. This can be done in two ways:

Dim Counter As Integer

Dim V As Double

For Counter = 0 To 10

V = Counter / 10.0

MsgBox(V)

Next

This method requires extra variable, and does not take advantage of the for loop. A better way is to use the
STEP keyword with double or single data type to make it easy for us:

Dim Counter As Double

For Counter = 0 To 1 Step 0.1

MsgBox(Counter)

Next

One last important thing to notice is that the initial value of the variable should always be smaller than or
equal to the value after the To keyword, otherwise the for loop does not get executed and it is skipped. For
example:

For Counter = 10 To 1

Visual Programming IS202

15
 المشهدي م.م. أنس القصابد. حيدر محمد

MsgBox(Counter)

Next

Will never give you message box at all. To fix this and make the countdown work, just put a negative step
value:

For Counter = 10 To 1 Step -1

MsgBox(Counter)

Next

These are most of the details needed to work with the For loop. The next example is a simple one showing
how to use the FOR loop to identify Prime number. Prime numbers are numbers that can only be divided by
themselves and 1 with remainder=0. So this means if we have number 9212, we should check the
remainder of
dividing this number over all the values from 9212 to 2 and it should never give a zero if it is a prime.
Without for loop this is very hard to compute. The code to calculate the prime number is:

Dim MyNumber As Integer

Dim RemainderIsZeroFlag As Boolean

Dim I As Integer

' read a number from the screen

MyNumber = InputBox("Enter a number")

' this is a flag to tell us when the condition

' of prime number is not satisfied

RemainderIsZeroFlag = False

' start checking all the numbers

For I = 2 To MyNumber - 1

' if the condition is not satisfied

If MyNumber Mod I = 0 Then

' mark that the remainder is not zero

RemainderIsZeroFlag = True

End If

Next

' if there was any remainder then tell the user

' that the number is not prime, else it is.

If RemainderIsZeroFlag Then

MsgBox("The number is not prime")

Else

MsgBox("The number is prime")

End If

